[Закрыть]
 
popoff.donetsk.ua
Слово «пытаться» часто означает «я попытаюсь сделать это вместо того, чтобы сделать».
Начало | Новости | Статьи | Форум | Опросы | Карта сайта | Обо мне
popoff.donetsk.ua - Статьи - ДонНТУ - Основы дискретной математики - Общая теоретическая справка - Системы счисления - Перевод чисел из десятичной системы счисления в любую другую
Я это делаю
Персональное меню
Голосование
Деньги, либо любимое занятие? Постоянный адрес этого вопроса
Деньги, но неинтересная работа и невозможность уделить время семье
Интересная работа, возможность саморазвиваться, но нищенский заработок
Ваш возраст (не обязательно)
Почему? (не обязательно)

Голосование закрыто.

Поиск по сайту
Реклама
Программное обеспечение любой сложности
koins.com.ua
Статистика

Перевод чисел из десятичной системы счисления в любую другую

Постоянный адрес статьи

При переводе чисел из десятичной системы счисления в любую другую, всегда отдельно (по разным правилам) переводится целая и дробная части.

Перевод целой части

Для того, чтобы перевести число из десятичной системы счисления, в любую другую, нужно выполнять целочисленное деление исходного числа на основание той системы счисления, в которую нужно перевести число. При этом важен остаток от деления и частное. Частное нужно делить на основание до тех пор, пока не останется 0. После этого все остатки нужно выписать в обратном порядке - это и будет число в новой системе счисления.

Например, перевод - числа 25 из десятичной системы счисления в двоичную будет выглядеть следующим образом:

Перевод числа из десятичной системы счисления в двоичную

Выписав остатки в обратном порядке, получим 2510=110012.

Если Вы задумаетесь, то можете легко заметить, что при переводе абсолютно любого числа в двоичную систему счисления самый последний остаток (то есть, самая первая цифра в результате) всегда будет равен самому последнему частному, которое оказалось меньше основания той системы счисления, в которую мы переводим число. Поэтому, деление часто останавливают раньше, чем частное станет равным нулю - в тот момент, когда частное станет просто меньше основания. Например:

Перевод числа из десятичной системы счисления в двоичную

Перевод из десятичной системы счисления в любую другую систему счисления производится по абсолютно точно таким же правилам. Вот пример перевода 39310 в шестнадцатеричную систему счисления:

Перевод числа из десятичной системы счисления в шестнадцатеричную

Выписав остатки в обратном порядке, получим 39310=18916.

Нужно понимать, что остатки получаются в десятичной системе счисления. При делении на 16 могут появиться остатки не только от 0 до 9, но также и остатки от 10 до 15. Каждый остаток - это всегда ровно одна цифра в той системе счисления, в которую осуществляется перевод.

Например, если при переводе в шестнадцатеричную систему счисления Вы получили такие остатки (выписаны в порядке, как они должны быть записаны в числе): 10, 3, 15, 7, то в шестнадцатеричной системе счисления этой последовательности остатков будет соответствовать число A3F716 (некоторые по ошибке записывают число как 10315716 - понято же, что это совсем другое число, и что если так делать, то получится, что ни в каком шестнадцатеричном числе не появится цифры от A до F).

Перевод дробной части

При переводе дробной части, в отличие от перевода целой части - нужно не делить, а умножать на основание той системы счисления, в которую мы переводим. При этом каждый раз отбрасываются целые части, а дробные части - снова умножаются. Собрав целые части в том порядке, как они были получены - получается дробная часть числа в нужной системе счисления.

Одна операция умножения даёт ровно один дополнительный знак в системе счисления, в которую осуществляется перевод.

При этом существует два условия завершения процесса:

1) в результате очередного умножения Вы получили ноль в дробной части. Понятно, что дальше этот ноль сколько ни умножай - он всё равно останется нулём. Это означает, что число перевелось из десятичной системы счисления в нужную точно.

2) не все числа возможно перевести точно. В таком случае обычно переводят с некоторой точностью. При этом сначала определяют, сколько знаков после запятой будет нужно - именно такое количество раз и нужно будет выполнить операцию умножения.

Вот пример перевода числа 0.3910 в двоичную систему счисления. Точность - 8 разрядов (в данном случае точность перевода выбрана произвольно):

Перевод дробного числа из десятичной системы счисления в двоичную

Если выписать целые части в прямом порядке, то получим 0.3910=0.011000112.

Самый первый ноль (на рисунке перечёркнут синим) выписывать не нужно - так как он относится не к дробной части, а к целой. Некоторые по ошибке записывают этот ноль после запятой, когда выписывают результат.

Вот так будет выглядеть перевод числа 0.3910 в шестнадцатеричную систему счисления. Точность - 8 разрядов в данном случае точность снова выбрана произвольно:

Перевод дробного числа из десятичной системы счисления в шестнадцатеричную

Если выписать целые части в прямом порядке, то получим 0.3910=0.63D700A316.

При этом Вы, наверное, заметили, что целые части при умножении получаются в десятичной системе счисления. Эти целые части, полученные при переводе дробной части числа следует интерпретировать точно так же, как и остатки при переводе целой части числа. То есть, если при переводе в шестнадцатеричную систему счисления целые части получились в таком порядке: 3, 13, 7, 10, то соответствующее число будет равно 0.3D7A16 (а не 0.31371016, как некоторые иногда ошибочно записывают).

Перевод числа с целой и дробной частью

Чтобы выполнить перевод числа с целой и дробной частью, нужно отдельно перевести целую часть, а отдельно - дробную, и поэтом эти две части записать вместе.

Например, 25.3910=11001.011000112 (переводы целой и дробной части - смотрите выше).

Перевод небольших целых чисел из десятичной системы счисления в двоичную в уме

Поскольку при работе с различными системами счисления, особенно при разработке программ, очень часто возникает необходимость перевода небольших целых чисел, то, вообще говоря, имеет смысл запомнить таблицу соответствия для первых 16 чисел (от 0 до 15).

Но если разобраться, как легко в уме переводить небольшие целые числа от 0 до 15 из десятичной системы счисления в двоичную, то значительную часть таблицы Вы сможете просто вычислять в уме каждый раз, когда это будет нужно. Проделывайте эту операцию много раз, и в какой-то момент Вы сами не сможете понять - Вы уже запомнили таблицу или всё ещё вычисляете.

Итак, чтобы перевести небольшое положительное целое число от 0 до 15 из десятичной системы счисления в двоичную, первое, что нужно понять - это что каждой позиции в двоичном числе соответствует степень двойки. При этом степени двойки для позиций от 0 до 3 запомнить очень просто - это числа 1, 2, 4 и 8:

8421

Далее, десятичное число, которое Вы хотите перевести в двоичную систему счисления, нужно представить в виде суммы чисел 1, 2, 4 и 8, причём каждое число можно использовать не больше одного раза. Если Вы задумаетесь, то поймёте, что это можно сделать только одним-единственным способом.

Когда Вы получили список чисел, которые должны войти в сумму, в позициях, соответствующих этим числам, нужно поставить единички, в остальных - нолики. Например, число 5 - это 4 плюс 1:

8421
0 1 0 1

А число 10 - это 2 плюс 8:

8421
1 0 1 0

Число 15 можно получить только сложив все числа 1, 2, 4, 8:

8421
1 1 1 1

Ну а число 0 - грех не запомнить, так как, чтобы его получить, ничего не нужно складывать:

8421
0 0 0 0

Последняя модификация: 22.02.09 20:45

Не проходите мимо! Оставьте Ваш комментарий в форуме! >>>